3.6.79 \(\int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [579]

3.6.79.1 Optimal result
3.6.79.2 Mathematica [A] (verified)
3.6.79.3 Rubi [A] (verified)
3.6.79.4 Maple [C] (verified)
3.6.79.5 Fricas [C] (verification not implemented)
3.6.79.6 Sympy [F(-1)]
3.6.79.7 Maxima [F]
3.6.79.8 Giac [F]
3.6.79.9 Mupad [B] (verification not implemented)

3.6.79.1 Optimal result

Integrand size = 23, antiderivative size = 120 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {2 b \left (3 a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \left (a^2+9 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {16 a^2 b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

output
-2*b*(3*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE 
(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*(a^2+9*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1 
/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a^2*(a+ 
b*cos(d*x+c))*sin(d*x+c)/d/cos(d*x+c)^(3/2)+16/3*a^2*b*sin(d*x+c)/d/cos(d* 
x+c)^(1/2)
 
3.6.79.2 Mathematica [A] (verified)

Time = 1.09 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.71 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \left (\left (-9 a^2 b+3 b^3\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \left (\left (a^2+9 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {a (a+9 b \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}\right )\right )}{3 d} \]

input
Integrate[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(5/2),x]
 
output
(2*((-9*a^2*b + 3*b^3)*EllipticE[(c + d*x)/2, 2] + a*((a^2 + 9*b^2)*Ellipt 
icF[(c + d*x)/2, 2] + (a*(a + 9*b*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x] 
^(3/2))))/(3*d)
 
3.6.79.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3271, 27, 3042, 3500, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3271

\(\displaystyle \frac {2}{3} \int \frac {8 b a^2+\left (a^2+9 b^2\right ) \cos (c+d x) a-b \left (a^2-3 b^2\right ) \cos ^2(c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {8 b a^2+\left (a^2+9 b^2\right ) \cos (c+d x) a-b \left (a^2-3 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {8 b a^2+\left (a^2+9 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a-b \left (a^2-3 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{3} \left (2 \int \frac {a \left (a^2+9 b^2\right )-3 b \left (3 a^2-b^2\right ) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {16 a^2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (\int \frac {a \left (a^2+9 b^2\right )-3 b \left (3 a^2-b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {16 a^2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\int \frac {a \left (a^2+9 b^2\right )-3 b \left (3 a^2-b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {16 a^2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{3} \left (a \left (a^2+9 b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 b \left (3 a^2-b^2\right ) \int \sqrt {\cos (c+d x)}dx+\frac {16 a^2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a \left (a^2+9 b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 b \left (3 a^2-b^2\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {16 a^2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (a \left (a^2+9 b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 b \left (3 a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {16 a^2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 a \left (a^2+9 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 b \left (3 a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {16 a^2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

input
Int[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(5/2),x]
 
output
(2*a^2*(a + b*Cos[c + d*x])*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ((-6* 
b*(3*a^2 - b^2)*EllipticE[(c + d*x)/2, 2])/d + (2*a*(a^2 + 9*b^2)*Elliptic 
F[(c + d*x)/2, 2])/d + (16*a^2*b*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))/3
 

3.6.79.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3271
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Co 
s[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f* 
(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin 
[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^ 
2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*d*(a^2 
+ b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - 
 d^2) - m*(b*c - a*d)^2 + d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x] 
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || 
IntegersQ[2*m, 2*n])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
3.6.79.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 9.73 (sec) , antiderivative size = 558, normalized size of antiderivative = 4.65

method result size
parts \(-\frac {2 a^{3} \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}+\frac {2 b^{3} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}+\frac {6 a \,b^{2} \operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}-\frac {6 a^{2} b \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(558\)
default \(-\frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (36 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b -2 F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}-18 F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}-18 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b +6 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}-18 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b +a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 a \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{3 \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(630\)

input
int((a+cos(d*x+c)*b)^3/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 
output
-2/3*a^3*(-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2) 
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-2*sin(1/2*d*x+ 
1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*((2*cos(1/2*d*x+1/2 
*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+ 
1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)/sin(1/2*d*x+1/2*c)/d+2*b^ 
3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c 
),2^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d* 
x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d+6*a*b^2/d*InverseJacobiAM(1/2* 
d*x+1/2*c,2^(1/2))-6*a^2*b*(-2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4 
+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x 
+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/ 
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c 
)^2-1)^(1/2)/d
 
3.6.79.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.85 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-i \, a^{3} - 9 i \, a b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, a^{3} + 9 i \, a b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (3 i \, a^{2} b - i \, b^{3}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-3 i \, a^{2} b + i \, b^{3}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (9 \, a^{2} b \cos \left (d x + c\right ) + a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(5/2),x, algorithm="fricas")
 
output
1/3*(sqrt(2)*(-I*a^3 - 9*I*a*b^2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(I*a^3 + 9*I*a*b^2)*cos(d*x + c 
)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)* 
(3*I*a^2*b - I*b^3)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInve 
rse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(-3*I*a^2*b + I*b^3 
)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x 
 + c) - I*sin(d*x + c))) + 2*(9*a^2*b*cos(d*x + c) + a^3)*sqrt(cos(d*x + c 
))*sin(d*x + c))/(d*cos(d*x + c)^2)
 
3.6.79.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+b*cos(d*x+c))**3/cos(d*x+c)**(5/2),x)
 
output
Timed out
 
3.6.79.7 Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(5/2),x, algorithm="maxima")
 
output
integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(5/2), x)
 
3.6.79.8 Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(5/2),x, algorithm="giac")
 
output
integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(5/2), x)
 
3.6.79.9 Mupad [B] (verification not implemented)

Time = 15.47 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.07 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2\,\left (\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\,b^3+3\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\,b^2\right )}{d}+\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {6\,a^2\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int((a + b*cos(c + d*x))^3/cos(c + d*x)^(5/2),x)
 
output
(2*(b^3*ellipticE(c/2 + (d*x)/2, 2) + 3*a*b^2*ellipticF(c/2 + (d*x)/2, 2)) 
)/d + (2*a^3*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3* 
d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (6*a^2*b*sin(c + d*x)*hyper 
geom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x 
)^2)^(1/2))